Nearly positive matrices
نویسندگان
چکیده
Nearly positive matrices are nonnegative matrices which, when premultiplied by orthogonal matrices as close to the identity as one wishes, become positive. In other words, all columns of a nearly positive matrix are mapped simultaneously to the interior of the nonnegative cone by mutiplication by a sequence of orthogonal matrices converging to the identity. In this paper, nearly positive matrices are analyzed and characterized in several cases. Some necessary and some sufficient conditions for a nonnegative matrix to be nearly positive are presented. A connection to completely positive matrices is also presented.
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملA note on positive deniteness and stability of interval matrices
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...
متن کاملMatrices with Maximum Upper Multiexponents in the Class of Primitive, Nearly Reducible Matrices
B. Liu has recently obtained the maximum value for the kth upper multiexponents of primitive, nearly reducible matrices of order n with 1 ≤ k ≤ n. In this paper primitive, nearly reducible matrices whose kth upper multiexponents attain the maximum value are completely characterized.
متن کاملGyrovector Spaces on the Open Convex Cone of Positive Definite Matrices
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
متن کاملcient Parallel Factorization and Solution ofStructured and Unstructured Linear
This paper gives improved parallel methods for several exact factoriza-tions of some classes of symmetric positive deenite (SPD) matrices. Our factorizations also provide us similarly eecient algorithms for exact computation of the solution of the corresponding linear systems (which need not be SPD), and for nding rank and determinant magnitude. We assume the input matrices have entries that ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014